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Based on the system of the equations of motion of an elastic medium with tetragonal anisotropy, a compara-
tive analysis of the curves of inverse velocities and the elastic-wave fronts in one crystallographic plane of a
cubically anisotropic body has been made with the use of sections of the surfaces of inverse velocities and
wave surfaces.

Investigations of surfaces characterizing different aspects of propagation of elastic waves occupy an impor-
tant place in the dynamic theory of elasticity of anisotropic media. Such surfaces include, for example, the surfaces
of inverse velocities, radiation surfaces, etc. [1, 2]. This is due to the fact that they allow not only calculation of the
velocity of propagation of waves and the rate of transfer of energy but also clear representation of wave processes
and description of their features. In view of the complexity and cumbersomeness of the corresponding characteristic
and dispersion equations,  however, such investigations are frequently confined to construction of the sections of the
surfaces of inverse velocities and radiation surfaces in special planes of anisotropic media that are for the most part
coordinate in the basic crystallographic coordinate system of an anisotropic body. Data on the regularities of propa-
gation of elastic waves in planes that are not coordinate have been given, for example, in [2]. In particular, the de-
pendences of the velocities of propagation of quasilongitudinal and quasitransverse waves in a cubically anisotropic
medium in one plane of the auxiliary coordinate system (x

_
1, x

_
2, x3) have been analyzed based on the system of

equations of motion of tetragonally anisotropic media (Fig. 1). Below, we propose a comparative analysis of these
results and the results of investigation of the curves of inverse velocities and the wave fronts in the plane x

_
1 = 0 of

the coordinate system (x
_

1, x
_

2, x3) of a cubically anisotropic medium in the context of three-dimensional repre-
sentations of wave motions [3].

Following [4], we write the expressions for dimensionless velocities of propagation of elastic waves in the
plane x

_
1 = 0 of a cubically anisotropic medium, which follow from the corresponding system of the equations of

motion [2]:
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In formula (1) and in what follows, the subscript 1 corresponds to the quasilongitudinal wave and the subscripts 2
and 3 correspond to the quasitransverse waves. The absolute value of the velocity is determined by multiplication of
vi by c.
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The coordinates of points of the plane x
_

1 = 0 of the cubically anisotropic medium that have been reached
by a wave disturbance by the time t = 1 sec will be obtained with the use of bicharacteristics [4] in dimensionless
form:
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The absolute values of the coordinates of points of the wave front at the time t are found by multiplication of the di-
mensionless values given below in the figures by ct.

Using (1) and (2), we construct the dimensionless curves of inverse velocities r
_

2 = 1/v
_

2 and r
_

3 = 1/v
_

3 and
the wave fronts l

_
2 and l

_
3 in the plane x

_
1 = 0 for a cubically anisotropic material characterized by the constants a =

2.24 and b = 3.72 (the elasticity constants A1, A2, and A4 have been taken from [5]).
From Fig. 2, it follows that the curve of inverse velocities r

_
3 and the wave front l

_
3 are ellipses; formulas

(1) and (2) yield that the r
_

3 and l
_
3 curves have the form of an ellipse in any cubically anisotropic medium. Thus,

from (2), after obvious transformations, we have
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We consider the inverse-velocity curves and the wave fronts obtained by section of the corresponding sur-
faces by the plane x

_
1 = 0. Omitting intermediate calculations, we give the expressions for the velocities of propaga-

tion of elastic waves and the coordinates of points of the wave front [3]:
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Fig. 1. Basic (x1, x2, x3) and auxiliary (x
_

1, x
_

2, x3) coordinate systems.
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where the index k in formulas (3) and (4) points to the type of elastic wave.
Prescribing appropriately the direction cosines cos αj of the normal to the characteristic surface in (3) and

(4), we can construct both three-dimensional surfaces and their sections by different planes. Figure 3 gives the
curves of inverse velocities r

_
2 and r

_
3 and the wave fronts l

_
2 and l

_
3 in the plane x

_
1 = 0 of the cubically anisotropic

material whose elastic properties are characterized by the constants a = 2.24 and b = 3.72.

Fig. 2. Curves of inverse velocities r
_

2 and r
_

3 (a) and the wave fronts l
_
2 and

l
_
3 (b) in the plane x

_
1 = 0 of cubically anisotropic media according to [2].
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From Fig. 3, it is clear that in the plane x
_

1 = 0, the curves of inverse velocities r
_

2 and r
_

3 do not coincide
with r

_
2 and r

_
3 constructed with the use of relations (1) (see Fig. 2). The wave fronts l

_
2 and l

_
3 obtained by section

of the wave surfaces of quasitransverse waves also differ from l
_
2 and l

_
3 presented in Fig. 2. Thus, from Fig. 3 it

follows that the propagation of the wave fronts l
_
2 and l

_
3 is accompanied by the formation of six and two lacunas

respectively, whereas, according to Fig. 2 (in the plane x
_

1 = 0 of the cubically anisotropic medium [2]), the wave
front l

_
2 has four lacunas and the front l

_
3 is an ellipse and contains no lacunas. The analogous disagreements of the

inverse-velocity curves and the wave fronts of quasitransverse waves, constructed based on the system of the equa-
tions of motion [2] and obtained by section of the corresponding surfaces by the x

_
1 = 0 plane, can be found for cu-

bically anisotropic materials characterized by other constants a and b. No differences have been established between
the r

_
1 and l

_
1 curves constructed in the context of the above-described approaches for quasilongitudinal waves.

In closing, we consider certain features of the inverse-velocity curves; the presence of these features [1, 6]
enables us to draw the conclusion on the occurrence of lacunas on the wave front. Among such features, according
to [1], is the existence of two points having one tangent to the inverse-velocity curve. For example, to the r

_
2 curve

we can draw six tangents (see Fig. 3) having two such points on r
_

2; therefore, the wave front of this quasitransverse
wave must have six lacunas confined in the intervals of the angles between the rays through the origin of coordi-
nates and the corresponding tangency points. This is confirmed by the front l

_
2 given in Fig. 3.

Another approach is based on the general theory of curves of fourth order (the occurrence of lacunas on the
wave front is suggested by the double points of inflection on the inverse-velocity curves) [6]. Thus, the r

_
2 curves

have two pairs of inflection points each, and the wave front l
_
2 contains two lacunas lying in the same quadrants of

the plane (x
_

2, x3) as the portions of concavity on the inverse-velocity curves. However, as Fig. 3 shows, lacunas on
the wave front l

_
2 also occur in the absence of inflection points. Therefore, we can say that the presence of inflection

points on the curve of inverse velocities is a necessary but insufficient condition for the occurrence of lacunas on
the wave front.

This work was carried out with support from the Belarusian Republic Foundation for Basic Research (pro-
ject No. F03M-171).

NOTATION

A1, A2, and A4, elasticity constants of the cubically anisotropic medium; a = A1
 ⁄ A4 − 1; b = A2

 ⁄ A4 + 1; and
c = √A4

 ⁄ ρ ; cos αj, direction cosines of the normal to the wave surface; r
_

2 and r
_

3, inverse-velocity curves; t, time;
αj, slope of the wave normal to the xi coordinate axis; ρ, density of the medium. Subscripts and superscripts: i and
k = 1, 3

___
.

Fig. 3. Sections of the surfaces of inverse velocities (a) and the wave surfaces
(b) of quasitransverse waves by the plane x

_
1 = 0 for cubically anisotropic

media.
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